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Abstract

A transport model for the turbulent heat ¯ux is proposed in consideration with the e�ect of the mean
temperature gradient. A rapid term to express the interaction between the mean temperature and velocity gradients

is introduced. The linearity in the exact turbulent heat ¯ux equation is retained in the modelled one, too. The e�ects
of Prandtl number and the turbulent Reynolds number are also taken into account. The comparison is made with
existing DNS and experimental data of homogeneous turbulence with and without the mean shear rate and the

stable strati®cation. It indicates that the proposed model agrees well with the DNS and experimental data
tested. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The direct numerical simulation (DNS) of turbulence
is now widely performed for various types of turbulent

¯ows. Although the DNS of turbulent heat transfer
has become widespreading, its applicability is limited

to the turbulences with a low Reynolds number and

simple geometry. Thus, the modelling of the turbulent
heat ¯ux is still of primary importance for the practical

calculation of the turbulent heat ¯ux. One of the dis-

tinguished features of the DNS is to provide the turbu-
lent modelling with detailed necessary information for

each term of the transport equations. Formerly, the
proposed turbulence models were tested against the ex-

perimental measurements; on the other hand, it is at

present more usual to examine the performance of the
models in comparison with the DNS data.

The exact transport equation for the turbulent heat
¯ux can be derived as

Duiy
Dt
� Piy � Giy � Tiy � Viy � ciy � fiy ÿ eiy, �1�

where

Piy�ÿuiuj @Y@ x j
ÿ ujy @Ui

@x j
production

Giy � ÿbgiy2 buoyancy production

Tiy�ÿ @ uiyuj
@x j

turbulent di�usion

Viy� @
@x j
�ny @ ui@x j

� aui @ y@x j
� molecular di�usion

ciy�ÿ 1
r
@ yp
@x i

pressure di�usion

fiy� 1
rp

@ y
@x i

pressure temperature-gradi-

ent correlation
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eiy��n� a� @ ui@ x j

@ y
@x j
: dissipation

In these terms, the production and the buoyancy pro-

duction terms can be calculated exactly from the
mean pro®les, Ui and Y, and the second-order corre-
lations, uiuj and uiy: Rest of the terms requires mod-
elling. Among them, the turbulent, molecular and

pressure di�usion terms are, if integrated over a given
domain, reduced to the di�erence of their values at
the boundary. Accordingly, the productions, the

pressure temperature-gradient correlation (PTG)
and the dissipation are the terms which determine the
net balance of the turbulent heat ¯ux within the

region.
In case of the heterogeneous turbulence such as

wall turbulence, none of the terms in Eq. (1) can be
neglected. In case of the homogeneous one, on the

other hand, only the productions, PTG and the dissi-
pation contribute the balance equation of the turbu-
lent heat ¯ux. In the present study, the homogeneous

turbulence with the mean-shear and buoyant pro-
ductions is adopted to concentrate the attention to
these important terms.

The standard procedure to obtain a formal ex-
pression for the pressure is to use the Poisson
equation and the Green's theorem

p � r
4p

�(
@ 2

@xk@x l
�ukul ÿ ukul � � 2

�
@ul
@xk

��
@Uk

@x l

�

� bgk
@y
@xk

) 0
dV

r
, �2�

where the prime ' denotes the position at r: The
last term in Eq. (2) represents the e�ect of buoy-

ancy.
With use of the above expression, the PTG term can

be obtained as follows.

fiy �
1

r
P
@y
@x i

fiy �
1

4p

� �
@y
@x i

� 
@ 2�ujuk �
@x j@xk

! 0
dV

r|�������������������������{z�������������������������}
fiy,1

�
1

2p

�
@Uj

@xk

� 0� � @y
@x i

��
@uk
@x j

� 0 dV
r|�����������������������������{z�����������������������������}

fiy,2

Nomenclature

bij anisotropic tensor, � uiuj=q2 ÿ
�1=3�dij

Cm model constant in the eddy di�usivity

model
C1y model constant in the slow term
C1y, a, C

0
1y, a model constants in the slow term

C1y, b, C
0
1y, b model constants in the slow term

C2y model constant in the rapid term
C3y model constant in the buoyancy term

g gravitational acceleration
gi gravity vector, =(0, 0, ÿg )
k kinetic energy, � uiui=2 � q2=2
p ¯uctuating pressure

Pr Prandtl number, � n=a
Prt turbulent Prandtl number, � nt=at

Ri Richardson number

Rig gradient Richardson number, �
bgSy=S

2

Ret turbulent Reynolds number, � k2=ne
S mean velocity gradient
Sy mean temperature gradient
St nondimensional time, � S � t
t time

Ui mean velocity
ui ¯uctuating velocity
uiuj Reynolds stress

uiy turbulent heat ¯ux
a thermal di�usivity
at thermal eddy di�usivity coe�cient

a10a6 model constants in the rapid term
b volumetric expansion coe�cient
b10b6 model constants in the rapid term

e dissipation of the kinetic energy, �
nui, jui, j

ey dissipation of the temperature var-
iance, � ay,jy,j

eiy dissipation of the turbulent heat ¯ux
Y mean temperature
y ¯uctuating temperature

n molecular viscosity coe�cient
nt eddy viscosity coe�cient
piy � fiy ÿ eiy
r density
fiy pressure temperature-gradient corre-

lation

III third invaliant, � bijbjkbki
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r|���������������������{z���������������������}

fiy,3

, �3�

where fiy, 1, fiy, 2 and fiy, 3 are called as slow, rapid

and buoyancy terms, respectively.
Gibson±Launder [1] (GL) proposed the so-called

``basic model'' for the PTG term:

fiy, 1 � ÿC1y
e
k
uiy �4�

fiy, 2 � C2yujy
@Ui

@x j
�5�

fiy, 3 � C3ybgiy
2: �6�

Afterwards, this basic model was extended into several
directions. Common procedure is to introduce the ani-
sotropy tensor of Reynolds stress bij:

bij � uiuj

q2
ÿ 1

3
dij, �7�

Craft and Launder [2] (CL) expanded the coe�cient in
Eqs. (4)±(6) in terms of bij; the one in the slow term

C1y, up to the second order of bij and the other in C2y

up to the third order. Shih and Shabbir [3] (SS) intro-
duced a concept of the realisability but their expression

was quite complicated. Rogers et al. [4] made DNS of
the turbulent heat ¯ux and investigated the e�ect of
molecular Prandtl number and the turbulent Reynolds

number. Shikazono and Kasagi [5] (SK) abandoned
the approach to split the PTG into the slow and rapid
terms and obtained a new expression for the PTG; it
gave good results but was not tensorially correct.

Jones and Musonge [6] (JM) retained a simpler
structure but introduced the mean temperature gradi-
ent into the PTG term. Although the mean tempera-

ture gradient does not appear in Eq. (3) explicitly, they
considered that it might a�ect the PTG implicitly
through the coupling between the energy and momen-

tum equations. Thus, they introduced a new term pro-
portional to the mean temperature gradient into the
PTG. This approach was adopted by CL, too.
In the Reynolds stress equation, the pressure±strain

term acts to compensate the production term, i.e., the
production term is not totally e�ective but only its cer-
tain percentage contributes as the production. In the

turbulent heat ¯ux equation, the PTG term plays the
same role. However, it contains only the mean shear
term; thus the mean temperature part in the pro-

duction term (Eq. (1)) cannot be compensated. This is
a reason why the mean temperature gradient should be
included in the PTG even though it does not appear in

Eq. (3). Thus, in the present study also, the mean tem-
perature gradient is included in the PTG term.

Another aspect of the present study is to retain the
linear structure of the transport equation of the turbu-
lent heat ¯ux in the modelled equation, too. That is,

each term in Eq. (1), except the buoyancy production
term, contains only one scalar quantity. That is, the
turbulent heat ¯ux equation is linear with respect to

the temperature. The buoyancy term is ignored tenta-
tively in the discussion here. If two temperature ®elds
y1 and y2 exist, each heat ¯ux satis®es Eq. (1) indepen-

dently; that is,

Duy1
Dt
� Eq: �1� with y � y1 and Y � Y1 �8�

Duy2
Dt
� Eq: �1� with y � y2 and Y � Y2: �9�

If these two temperature ®elds are overlapped, the

resultant heat ¯ux

uy3 � uy1 � uy2 �10�

must be obtained by the linear summation of Eqs. (8)

and (9):

Duy3
Dt
� Duy1

Dt
� Duy2

Dt
: �11�

This implies that the modelled transport equation
should also satisfy the above linear summation rule.
This is the linearity principle proposed by Pope [7].

Although this is an evidently fundamental principle, it
has been ignored in most of the scalar transport
models proposed hitherto. That is, the so-called time

constant ratio R � y2e=�2key�, which con¯icts with this
principle, is often included in the scalar transport
model, because it allows introduction of additional

terms and brings more freedom in the modelling.
Thus, the linearity principle has been often preferred
to be abandoned in many scalar transport models.
The another principle to be considered in the model-

ling of the turbulent heat ¯ux is the realisability. Since
the turbulent heat ¯ux is a kind of the cross corre-
lation, it must satisfy the following inequality:�
u�i�y

�2
Ru2�i� � y2, �12�

where no summation rule is applied to (i ). Some

researchers have placed more emphasis on the realis-
ability principle. To satisfy the above relation, the
transport equation for uiy must contain some

information on y2: This con¯icts with the linearity
principle. Thus, to the author's knowledge, no model
has been proposed to satisfy both the linearity and
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realisability. The inequality of Eq. (12) is certainly an
obvious mathematical prerequisite; however, it is not

easily violated if each turbulent quantities are properly
predicted. Thus, in the present study, the linearity prin-
ciple is adopted. The objective of the present work is

to propose a turbulent heat ¯ux model which includes
the mean temperature gradient e�ect in the rapid term
of PTG and moreover satis®es the linearity principle.

The proposed model is examined in reference to the
DNS data of the homogeneous turbulence which
includes all the budget terms of the turbulent heat ¯ux

transport equation except the di�usive terms.

2. Modelling of the PTG term

In the homogeneous turbulence, all the di�usion
terms �Tiy, Viy and ciy� are zero; thus, the productions

�Piy and Giy), the pressure temperature-gradient corre-
lation �fiy, PTG) and the dissipation �eiy� terms are
considered in this study. Among them, the production

terms can be calculated if the other second moment
quantities, i.e., uiuj, uiy and y2 are given. Thus, the
PTG and dissipation are the terms to be modelled in

the present work.
The dissipation takes place in the small scale, where

the turbulence is isotropic. On the other hand, the ex-

pression of the dissipation is not symmetric for the
inversion of the space coordinate. Thus, the dissipation
of the turbulent heat ¯ux is essentially small. Accord-
ingly, the dissipation is often included in the PTG and

is modelled together as follows:

piy � fiy ÿ eiy: �13�
This approach is adopted in this study, too.
Firstly, the rapid term is discussed. The rapid term

is expressed with introduction of a third-order tensor
Xijk:

fiy, 2 � Xijk
@Uj

@xk
�14�

with

Xijk � 1

2p

� �
@y
@x i

��0��
@uk
@x j

� 0 @V
r
, �15�

where the prime 0 again denotes the position r and (0)
indicates r � 0: In case of the homogeneous turbu-
lence, the tensor Xijk can be further rearranged as

Xijk � 1

2p

�
@ 2

@ ri@rj
y�0�u 0k

@V

r
: �16�

With inspection of Eqs. (15) and (16), the following
three restrictions are found to be imposed upon Xijk:

1. the continuity condition of Eq. (15)

Xikk � 0 �17�

2. the symmetry condition of Eq. (16)

Xijk � Xjik �18�

3. the application of the Green's theorem to Eq. (16)

with i � j

Xiik � 2uky: �19�

If one assumes here that Xijk is expanded in terms of
uiy as

Xijk � a1dijuky� a2dikujy� a3dkjuiy �20�

then the application of Eqs. (17)±(19) brings a well-
known result of

a1 � 0:8 a2 � a3 � ÿ0:2: �21�

This is the so-called basic model. It is known, however,
that this basic model does not always give good

results. Common approach (CL, SS) is to add higher
order terms of the anisotropy tensor bij: Preliminary
test, however, indicated that the contribution of the

higher order terms was small. In the present work,
instead, the Xijk is further expanded in terms of the
mean-temperature gradient:

Xijk �
�
a1dijuky� a2dikujy� a3dkjuiy� a4bijuky

� a5bikujy� a6bkjuiy
�

�
�
b1dij

@Y
@xk
� b2dik

@Y
@xj
� b3dkj

@Y
@x i

� b4bij
@Y
@xk
� b5bik

@Y
@x j
� b6bkj

@Y
@xi

�
q2

q2

e

�22�

or equivalently

Xijk �
�
a�1dijuky� a�2dikujy� a�3dkjuiy

�
�
�
a4uiujuky� a5uiukujy� a6ukujuiy

� 1

q2

�
�
b�1dij

@Y
@xk
� b�2dik

@Y
@x j
� b�3dkj

@Y
@x i

�
q2

q2

e

�
�
b4uiuj

@Y
@xk
� b5uiuk

@Y
@x j
� b6ukuj

@Y
@x i

�
q2

e
,

�23�

where
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a�1 � a1 ÿ �1=3�a4 a�2 � a2 ÿ �1=3�a5
a�3 � a3 ÿ �1=3�a6

b�1 � b1 ÿ �1=3�b4 b�2 � b2 ÿ �1=3�b5
b�3 � b3 ÿ �1=3�b6:

The relations among these coe�cients can be obtained
from the conditions (17)±(19) for Xijk: Firstly, from the
symmetric condition of Eq. (18), it turns out that

a�2 � a�3, a5 � a6 �24�

b�2 � b�3, b5 � b6 �25�

Secondly, from the continuity,

Xikk � a�1dikuky� a�2
ÿ
dikuky� dkkuiy

�
�
�
a4uiukuky� a5

ÿ
uiukuky� ukukuiy

�	 1
q2

�
�
b�1dik

@Y
@xk
� b�2

�
dik
@Y
@xk
� dkk

@Y
@x i

��
q2

q2

e

�
�
b4uiuk

@Y
@xk
� b5

�
uiuk

@Y
@xk
� ukuk

@Y
@x i

��
q2

e

� 0

�26�

or equivalently

Xikk �
ÿ
a�1 � 4a�2 � a5

�
uiy� �a4 � a5 �uiuk

q2
uky

� ÿb�1 � 4b�2 � b5
�
q2

q2

e
@Y
@x i

� ÿb4 � b5
�q2
e
uiuk

@Y
@xk
� 0:

�27�

Thirdly, from the normalisation

Xiik � a�1diiuky� a�2
ÿ
dikuiy� dkiuiy

�
�
�
a4uiuiuky� a5

ÿ
uiukuiy� ukuiuiy

�	 1
q2

�
�
b�1dii

@Y
@xk
� b�2

�
dik
@Y
@x i
� dki

@Y
@x i

��
q2

q2

e

�
�
b4uiui

@Y
@xk
� b5

�
uiuk

@Y
@x i
� ukui

@Y
@x i

��
q2

e

� 2uky,

�28�

which can be rearranged as

ÿ
3a�1 � 2a�2 � a4 ÿ 2

�
uiy� 2a5

uiuk

q2
uky

�ÿ3b�1 � 2b�2 � b4
�
q2

q2

e
@Y
@x i
� 2b5

q2

e
uiuk

@Y
@xk

� 0:

�29�

If the quantities

uiy,
uiuk

q2
uky, q2

q2

e
@Y
@x i

,
q2

e
uiuk

@Y
@xk

�30�

should be independent of each other, the following
conditions must be imposed:

a�1 � 4a�2 � a5 � 0 a4 � a5 � 0
b�1 � 4b�2 � b5 � 0 b4 � b5 � 0
3a�1 � 2a�2 � a4 � 2 2a5 � 0
3b�1 � 2b�2 � b4 � 0 2b5 � 0:

�31�

It is interesting to note that Eq. (31) reduces to Eqs.
(20) and (21). (This was pointed out by one of

reviewers.)
The quantities in Eq. (30) are, however, not indepen-

dent each other. Firstly, a simple eddy di�usivity
assumption is often a good approximation. This means

the following relation must hold approximately:

ÿuiy � at

@Y
@x i
� nt

Prt

@Y
@x i
� Cm

Prt

k2

e
@Y
@x i

� Cm

4Prt

q2
q2

e
@Y
@x i

: �32�

Another simple basic representation can be obtained
from the balance between the production and slow
terms of the PTG:

0 � ÿuiuj @Y
@x j
�
�
ÿ C1y

e
k
uiy
�
: �33�

Thus,

ÿuiy � 1

2C1y

q2

e
uiuj

@Y
@x j

: �34�

Eqs. (32) and (33) are quite common assumptions in
simple turbulent models. If these two equations are
admitted, it means that the following relation is

assumed implicitly.

uiy � ÿ 1

2C1y

uiuj

q2
q2

q2

e
@Y
@xj
� 2Prt

C1yCm

uiuj

q2
ujy �35�

One of the reviewers pointed out that the above re-
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lation must hold for the present formulation to be
valid. The ®rst impression of Eq. (35) is rather unfami-

liar. However, an implication of Eq. (35) is that the
turbulent heat ¯ux ujy a�ects uiy through the velocity
¯uctuation correlation uiuj: In other words, if uiuj � 0,

then ujy should cause no e�ect upon uiy: This is thus a
quite reasonable assumption.
Considering Eqs. (32), (34) and (35) with Cm � 0:09,

Prt � 0:6 (for free turbulence) and C1y � 3:0, one
obtains

a�1 � 4a�2 � 0:225�a4 � a5 � � a5

ÿ 26:7
ÿ
b�1 � 4b�2 � b5

�ÿ 6
ÿ
b4 � b5

� � 0
�36�

3a�1 � 2a�2 � a4 � 0:45a5

ÿ 26:7
ÿ
3b�1 � 2b�2 � b4

�ÿ 12b5 � 2:
�37�

Finally, the eight unknown coe�cients are determined
empirically referring to the various experiments and
DNSs with the above correlations (36) and (37) in con-

sideration:

a�1 � 0:6, a�2 � ÿ0:1
a4 � 1:0, a5 � 0:45
b�1 � 0:02, b�2 � ÿ0:005
b4 � ÿ0:01, b5 � 0:02

�38�

The coe�cient of the buoyancy term can be deter-
mined from the normalisation condition Yii � ÿy2 as

Yii � ÿ3C3yy
2 � ÿy2 �39�

C3y � 1

3
: �40�

The slow term is modelled by expanding it in terms of
bij: For the simplicity, only the zeroth- and ®rst-order
terms are retained. The second-order term was also

examined, but its contribution was su�ciently small.
The mean gradient term has been also tried to be

included, however, its e�ect is not consistent in the
cases tested in this study. Thus, it is not included in
the slow term. Thus, the expression of the slow term

becomes

piy, 1 � ÿC1y, a
e
k
uiyÿ C 01y, a

e
k
bijujy: �41�

E�ect of molecular Prandtl Pr was investigated by Iida
and Kasagi [8] through DNS of the homogeneous tur-
bulence. Their results indicated a non-negligible e�ect

of Pr on C1y, a: This is because the dissipation eiy is
included in C1y, a and it becomes more signi®cant with
decrease of Pr. It is thus found that inclusion of a fac-

tor (1 + C/Pr ) collapses the data as seen in Fig. 1.
Since the decaying turbulence becomes weaker with

the elapse of time, the e�ect of turbulent Reynolds
number must be also considered. The examination of

DNS data by Ihira and Kawamura [9] indicated that
C1y, a can be well correlated by introduction of the tur-
bulent Reynolds number (see Fig. 2). Thus, the coef-

®cient C1y, a is given as

C1y, a � 3:6

�
1:0� 0:05

Pr

��
1:0ÿ 0:74exp

�
ÿ Ret

100

��
: �42�

The second coe�cient C 01y, a is assumed to be
C 01y, a � ÿ2:0:
Finally, the model equation in the present study

becomes

piy, 1 � ÿC1y, a
e
k
uiyÿ C 01y, a

e
k
bijujy �43�

piy, 2 � a�1ujy
@Ui

@x j
� a�2ujy

@Uj

@x i

Fig. 2. Coe�cient in slow term (e�ect of turbulent Reynolds

number).Fig. 1. Coe�cient in slow term (e�ect of Prandtl number).
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�
n
a4uiujuky� a5

�
uiukujy� ukujuiy

�o 1

q2

@Uj

@xk

�
�
b�1
@Ui

@xk
� b�2

@Uk

@x i

�
q2

q2

e
@Y
@xk

�
�
b4uiuj

@Y
@xk
� b5

�
uiuk

@Y
@x j
� ukuj

@Y
@x i

��
q2

e
@Uj

@xk
�44�

piy, 3 � ÿC3y� ÿ bgi �y2 �45�
with the coe�cients given by Eqs. (38), (40) and (42).
The above coe�cient has been tested for a moderate
range of the Prandtl number as 0.2 < Pr< 1.5. Exten-

sion to a wider range is left for the further investi-
gation.

3. Results

The model derived above is compared with exper-
iment and DNS data. Results given by existing models

are also presented for the comparison. Since the pre-
sent work aims to examine the scalar transport model,
the other turbulence quantities such as the Reynolds

stresses and the dissipations, are obtained from exper-
iment or simulation; only the turbulent heat ¯ux uiy is
calculated. The temperature variance y2 is also calcu-

lated in case of the buoyant ¯ow.
Since the homogeneous turbulence is assumed, no

di�usion terms appear in the governing equation of
the temperature variance.

It can be expressed as

@y2

@ t
� ÿ2ujy @Y

@x j
ÿ ey, �46�

where the dissipation rate ey is again adopted from
DNS.

3.1. Anisotropic turbulence without shear and buoyancy

Ihira and Kawamura [10] performed DNS for var-

ious combinations of anisotropy III, direction of the
mean temperature gradient and the Prandtl number.
Tested cases are as follows

III > 0 III < 0
dY=dx 2 � ÿ1 Pr � 0:4 Case P Case R

Pr � 0:71 Case Q Case S

dY=dx 3 � ÿ1 Pr � 0:4 Case T Case U

�47�

Results of comparison are shown in Figs. 3±5. The

present model generally gives good predictions. This is
mainly because it includes the Prandtl and turbulent
Reynolds numbers in the coe�cient C1y, a: Among the

other models, GL and JM predict a faster decay. Abe,
Kondoh and Nagano [11] (AKN) gives a good agree-
ment in Case U but not in other cases, where it does

not satisfy the initial condition. This is because AKN
is not a di�erential equation but an algebraic equation
model; thus, the initial condition cannot be speci®ed.

Fig. 4. Variation of turbulent heat ¯ux in an anisotropic tur-

bulence (DNS by Ihira and Kawamura [10]: Cases R and S).

Fig. 3. Variation of turbulent heat ¯ux in an anisotropic tur-

bulence (DNS by Ihira and Kawamura [10]: Cases P and Q).
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SK predicts well for Pr � 0:71, but it gives a slower
decay in the other cases. Next comparison is made

with DNS by Iida and Kasagi [12]. Four cases are
examined

III > 0 III < 0
dY=dx 2 � ÿ1 Case 1 Case 3
dY=dx 3 � ÿ1 Case 2 Case 4

�48�

The Prandtl number is 0.7 in all cases. The comparison

is shown in Figs. 6 and 7. SK and the present model
gives a good agreement for all cases. Shimada and

Nagano [13] (SN) predicts a slower decay while the
other models decay too rapidly.

3.2. Sheared turbulence without buoyancy

Rogers et al. [4] performed DNS for the homo-

geneous turbulence with mean shear in the direction of
x 2 while the mean temperature gradient exists in three
di�erent directions, x 1 (Case 1), x 2 (Case 2), and x 3

(Case 3). Results of comparison are shown in Fig. 8.
The present model agrees well with their DNS with an
only exception of uy in Case 1. SK gives generally

good results; but, as mentioned earlier, it is based ten-
sorially inconsistent expression; so it adopts a di�erent
coe�cient for uy and vy: Agreements in other models

are generally not so good.
A well-known experiment of this type was made by

Tavoularis and Corrsin [14] (TC). The shear and the
temperature gradient were imposed in the same direc-

tion. Fig. 9 shows the comparison with the model pre-
dictions. Most of the models tested give good results.
The agreement is better in the heat ¯ux in the direction

of mean temperature gradient, while it is slightly worse
in the streamwise direction. Similar experiment was
made by Maekawa and Kobayashi [15]. The directions

of shear and the temperature gradients are same as the
former experiment (TC) but their sign is inversed.
Comparison with the prediction is given in Fig. 10.
The present model gives a good agreement with the ex-

periment. The above comparisons for the sheared tur-

Fig. 5. Variation of turbulent heat ¯ux in an anisotropic tur-

bulence (DNS by Ihira and Kawamura [10]: Cases T and U).

Fig. 6. Variation of turbulent heat ¯ux in an anisotropic tur-

bulence (DNS by Iida and Kasagi [12]: Cases 1 and 2).

Fig. 7. Variation of turbulent heat ¯ux in an anisotropic tur-

bulence (DNS by Iida and Kasagi [12]: Cases 3 and 4).
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bulence indicates that the prediction by this model as
well as by the other ones agrees better with the exper-
iment than with the DNS data. In the DNS, the shear

is imposed suddenly; thus the turbulence spectrum
develops with the elapse of time. This situation is di�-
cult to be predicted by this kind of turbulence model,

because it deals with only the quantities integrated
with respect to the spectrum.

3.3. Strati®ed turbulence without mean shear

Gerz and Schumann [16] performed DNS of the sta-

bly strati®ed turbulence without mean shear. The posi-
tive temperature gradient is imposed in the direction of
x 3 with the gravity vector (0, 0, ÿg ). The results are

Fig. 8. Variation of turbulent heat ¯ux in a sheared turbu-

lence (DNS by Rogers et al. [4]).

Fig. 9. Variation of turbulent heat ¯ux in a sheared turbu-

lence (experiment by Tavoularis and Corrsin [14]).

Fig. 10. Variation of turbulent heat ¯ux in a sheared turbu-

lence (experiment by Maekawa and Kobayashi [15]).

Fig. 11. Variation of turbulent heat ¯ux in a stably strati®ed

turbulence (DNS by Gerz and Schumann [16]).
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shown in Fig. 11, the vertical heat ¯ux becomes oscil-
latory with increase of the Richardson number

Ri � g
@r=@x 3

r�@U1=@x 3 �2
: �49�

This tendency is well predicted by almost all the
models tested. The heat ¯ux becomes negative in some
period; this is the counter gradient heat ¯ux (CGHF).
This is also well reproduced by the model predictions.

3.4. Strati®ed turbulence with mean shear

Gerz et al. made DNS [17] and LES [18] of the
strati®ed and sheared turbulence. Comparison is made
in Fig. 12. In this ®gure, the gradient Richardson num-

ber is de®ned as

Rig � bg
@Y=@x 3

�@U1=@x 3 �2
: �50�

In case of a low Rig �Rig � 0:13), it is interesting to

note that the heat ¯ux stays in a quasi-stationary level.
This indicates that the decay rate of turbulence is
balanced with the production by the mean shear. This

behaviour is well predicted by the present model. GL
also agrees well the DNS. The CGHF occurs in case

of the high Rig; and it is well captured by the models
tested.

4. Conclusion

A new model for turbulent heat ¯ux transport was
developed with the e�ect of the mean temperature gra-

dient directly taken into account. The derivation of the
rapid term was reexamined including the mean tem-
perature gradient explicitly. The linearity in the exact

transport equation for the turbulent heat ¯ux was
retained in the modelled equation. The proposed
model was tested in comparison with the DNSs and
experiments of homogenous turbulence with and with-

out the mean shear rate and the stable strati®cation.
The new model gave good agreement with the DNS
and experimental data.

Acknowledgements

The present study was initiated during the ®rst
author's sabbatical stay in DLR at Oberpfa�enhofen,

Germany. He would appreciate very much the collab-
oration by Prof. U. Schumann and Dr. T. Gerz for
o�ering the DNS and LES data on the strati®ed turbu-
lence. The authors are also indebted to Prof. Kasagi of

the University of Tokyo for the DNS data of the ani-
sotropic decaying turbulence. In addition, reviewers of
this article made quite suggestive comments. Following

them, the introduction was rewritten to a large extent.
The description on the derivation of the rapid term
was revised to be more clear. The authors heartily ap-

preciate the constitutive comments by the reviewers.

References

[1] M.M. Gibson, B.E. Launder, Ground e�ects on press-

ure ¯uctuations in the atmospheric boundary layer,

Journal of Fluid Mech 86 (1978) 491±511.

[2] T.J. Craft, B.E. Launder, A new model for the pressure/

scalar-gradient correlation and its application to homo-

geneous and in homogeneous free shear ¯ows, in:

Proceedings of the 7th Symposium on Turbulent shear

Flows, 1989, pp. 17.1.1±17.1.6.

[3] T.-H. Shih, A. Shabbir, Advances in modelling the

pressure correlation terms in the second moment

equations, in: T.B. Gatski, et al. (Eds.), Studies in

Turbulence, Springer-Verlag, Berlin, 1992, p. 91.

[4] M.M. Rogers, P. Moin, W.C. Reynolds, The structure

and modelling of the hydrodynamic and passive scalar

®elds in homogeneous turbulent shear ¯ow, Report TF-

25, Department of Mechanical Engineering, Stanford

University, Stanford, CA, Aug. 1986.

Fig. 12. Variation of turbulent heat ¯ux in a stably strati®ed

sheared turbulence (DNS by Gerz et al. [17] and LES by Kal-

tenbach et al. [18]).

H. Kawamura, Y. Kurihara / Int. J. Heat Mass Transfer 43 (2000) 1935±19451944



[5] N. Shikazono, N. Kasagi, Modeling Prandtl number in-

¯uence on scalar transport in isotropic and sheared tur-

bulence, in: Proceedings of the 9th Symposium on

Turbulent Shear Flows, vol. 2, 1993, pp. 18.3.1±18.3.6.

[6] W.P. Jones, P. Musonge, Closure of the Reynolds stress

and scalar ¯ux equations, Physics of Fluids 31 (1988)

3589±3604.

[7] S.B. Pope, Consistent modelling of scalars in turbulent

¯ows, Physics of Fluids 26 (1983) 404±408.

[8] O. Iida, N. Kasagi, Direct numerical simulation of

homogeneous isotropic turbulence with heat transport

(Prandtl number e�ects), Transaction of JSME 59B

(1993) 3359±3364.

[9] H. Ihira, H. Kawamura, DNS and modelling of scalar

transport in homogeneous turbulence, in: W. Robi, et

al. (Eds.), Engineering Turbulence Modeling and

Experiments, vol. 3, Elsevier, Amsterdam, 1996, p. 239.

[10] H. Ihira, H. Kawamura, Unpublished data, also in Ref.

[10].

[11] K. Abe, T. Kondoh, Y. Nagano, A two-equation heat-

transfer model re¯ecting second-moment closures for

well and free turbulent ¯ows, in: Proceedings of 10th

Symposium on Turbulent Shear Flows, vol. 3, 1995, pp.

28.3.1±28.3.6.

[12] O. Iida, N. Kasagi, Direct numerical simulation of

decaying homogeneous turbulence with heat transport,

in: Proceeding of 29th National Heat Transfer

Symposium of Japan, 1992, pp. 398±399.

[13] M. Shimada, Y. Nagano, Discussion on turbulent heat

¯ux equation model (pressure temperature-gradient cor-

relation), in: Proceedings of 31st National Heat Transfer

Symposium of Japan, vol. 1, 1994, pp. 73±75.

[14] S. Tavoularis, S. Corrsin, Experiments in nearly homo-

geneous turbulent shear ¯ow with a uniform mean tem-

perature gradient, Part 1, Journal of Fluid Mech 104

(1981) 311±347.

[15] H. Maekawa, M. Kobayashi, Heat transfer in simply

sheared turbulence, Transaction of JSME 45B (1979)

983±992.

[16] T. Gerz, U. Schumann, Direct simulation of homo-

geneous turbulence and gravity waves in sheared and

unsheared strati®ed ¯ows, in: F. Durst (Ed.), Turbulent

Shear Flow, vol. 7, Springer-Verlag, Berlin, 1991, pp.

27±45.

[17] T. Gerz, J.M.L. Palma, Sheared and stably strati®ed

homogeneous turbulence: comparison of DNS and LES,

in: P. Voke (Ed.), Direct and Large-Eddy Simulation I,

Kluwer, Dordrecht, 1994, p. 145.

[18] H.J. Kaltenbach, U. Schumann, T. Gerz, Large-eddy

simulation of turbulent di�usion in stably strati®ed

shear ¯ow, Journal of Fluid Mech 280 (1994) 1±40.

H. Kawamura, Y. Kurihara / Int. J. Heat Mass Transfer 43 (2000) 1935±1945 1945


